emh

sometimes the heart

Senin, 12 November 2012

ecology


Ecology (from Greek: οκος, "house"; -λογία, "study of"[A]) is the scientific study of the relationships that living organisms have with each other and with their natural environment. Topics of interest to ecologists include the composition, distribution, amount (biomass), number, and changing states of organisms within and among ecosystems. Ecosystems are composed of dynamically interacting parts including organisms, thecommunities they make up, and the non-living components of their environment. Ecosystem processes, such as primary production, pedogenesis,nutrient cycling, and various niche construction activities, regulate the flux of energy and matter through an environment. These processes are sustained by the biodiversity within them. Biodiversity refers to the varieties of species in ecosystems, the genetic variations they contain, and the processes that are functionally enriched by the diversity of ecological interactions.
Ecology is an interdisciplinary field that includes biology and Earth science. The word "ecology" ("Ökologie") was coined in 1866 by the German scientist Ernst Haeckel (1834–1919). Ancient Greek philosophers such as Hippocrates and Aristotle laid the foundations of ecology in their studies on natural history. Modern ecology transformed into a more rigorous science in the late 19th century. Evolutionary concepts on adaptation and natural selection became cornerstones of modern ecological theory. Ecology is not synonymous with environment, environmentalism, natural history, or environmental science. It is closely related to evolutionary biology, genetics, and ethology. An understanding of how biodiversity affects ecological function is an important focus area in ecological studies.

Early beginnings

Ecology has a complex origin, due in large part to its interdisciplinary nature. Ancient Greek philosophers such as Hippocrates and Aristotle were among the first to record observations on natural history. However, they viewed life in terms of essentialism, where species were conceptualized as static unchanging things while varieties were seen as aberrations of an idealized type. This contrasts against the modern understanding of ecological theory where varieties are viewed as the real phenomena of interest and having a role in the origins of adaptations by means ofnatural selection. Early conceptions of ecology, such as a balance and regulation in nature can be traced to Herodotus (died c. 425 BC), who described one of the earliest accounts ofmutualism in his observation of "natural dentistry". Basking Nile crocodiles, he noted, would open their mouths to give sandpipers safe access to pluck leeches out, giving nutrition to the sandpiper and oral hygiene for the crocodile. Aristotle was an early influence on the philosophical development of ecology. He and his student Theophrastus made extensive observations on plant and animal migrations, biogeography, physiology, and on their behaviour, giving an early analogue to the modern concept of an ecological niche.
Ecological concepts such as food chains, population regulation, and productivity were first developed in the 1700s, through the published works of microscopist Antoni van Leeuwenhoek (1632–1723) and botanist Richard Bradley (1688?–1732).Biogeographer Alexander von Humbolt (1769–1859) was an early pioneer in ecological thinking and was among the first to recognize ecological gradients, where species are replaced or altered in form along environmental gradients, such as a cline forming along a rise in elevation. Humbolt drew inspiration from Isaac Newton as he developed a form of "terrestrial physics." In Newtonian fashion, he brought a scientific exactitude for measurement into natural history and even alluded to concepts that are the foundation of a modern ecological law on species-to-area relationships. Natural historians, such as Humbolt, James Hutton and Jean-Baptiste Lamarck (among others) laid the foundations of the modern ecological sciences. The term "ecology" (German: Oekologie) is of a more recent origin and was first coined by the German biologist Ernst Haeckel in his book Generelle Morphologie der Organismen (1866). Haeckel was a zoologist, artist, writer, and later in life a professor of comparative anatomy.

Since 1900

Modern ecology is a young science that first attracted substantial scientific attention toward the end of the 19th century (around the same time that evolutionary studies were gaining scientific interest). In the early 20th century, ecology transitioned from a moredescriptive form of natural history to a more analytical form of scientific natural history. Frederic Clements published the first American ecology book in 1905, presenting the idea of plant communities as a superorganism. This publication launched a debate between ecological holism and individualism that lasted until the 1970s. Clements' superorganism concept proposed that ecosystems progress through regular and determined stages of seral development that are analogous to the developmental stages of an organism. The Clementsian paradigm was challenged by Henry Gleason, who stated that ecological communities develop from the unique and coincidental association of individual organisms. This perceptual shift placed the focus back onto the life histories of individual organisms and how this relates to the development of community associations.
The Clementsian superorganism theory was an overextended application of an idealistic form of holism. The term "holism" was coined in 1926 by Jan Christian Smuts, a South African general and polarizing historical figure who was inspired by Clements' superorganism concept. Around the same time, Charles Elton pioneered the concept of food chains in his classical book Animal Ecology. Eltondefined ecological relations using concepts of food chains, food cycles, and food size, and described numerical relations among different functional groups and their relative abundance. Elton's 'food cycle' was replaced by 'food web' in a subsequent ecological text Alfred J. Lotka brought in many theoretical concepts applying thermodynamic principles to ecology. In 1942, Raymond Lindeman wrote a landmark paper on the trophic dynamics of ecology, which was published posthumously after initially being rejected for its theoretical emphasis. Trophic dynamics became the foundation for much of the work to follow on energy and material flow through ecosystems. Robert E. MacArthur advanced mathematical theory, predictions and tests in ecology in the 1950s, which inspired a resurgent school of theoretical mathematical ecologists.[10][32][33] Ecology also has developed through contributions from other nations, including Russia's Vladimir Vernadsky and his founding of the biosphere concept in the 1920sand Japan's Kinji Imanishi and his concepts of harmony in nature and habitat segregation in the 1950s. The scientific recognition of contributions to ecology from non-English-speaking cultures is hampered by language and translation barriers.
Ecology surged in popular and scientific interest during the 1960–1970s environmental movement. There are strong historical and scientific ties between ecology, environmental management, and protection. The historic emphasis and poetic naturalist writings for protection was on wild places, from notable ecologists in the history of conservation biology, such as Aldo Leopold and Arthur Tansley, were far removed from urban centres where the concentration of pollution and environmental degradation is located. Palamar (2008) notes an overshadowing by mainstream environmentalism of pioneering women in the early 1900s who fought for urban health ecology and brought about changes in environmental legislation. These women were precursors to the more popularized environmental movements after the 1950s. In 1962, marine biologist and ecologist Rachel Carson's book Silent Springhelped to mobilize the environmental movement by alerting the public to toxic pesticides, such as DDT, bioaccumulating in the environment. Carson used ecological science to link the release of environmental toxins to human and ecosystem health. Since then, ecologists have worked to bridge their understanding of the degradation of the planet's ecosystems with environmental politics, law, restoration, and natural resources management. 



Hierarchical ecology

The scale of ecological dynamics can operate like a closed system, such as aphids migrating on a single tree, while at the same time remain open with regard to broader scale influences, such as atmosphere or climate. Hence, ecologists classify ecosystems hierarchically by analyzing data collected from finer scale units, such as vegetation associations, climate, and soil types, and integrate this information to identify emergent patterns of uniform organization and processes that operate on local to regional, landscape, and chronological scales.
To structure the study of ecology into a conceptually manageable framework, the biological world is organized into a nested hierarchy, ranging in scale from genes, to cells, to tissues, to organs, to organisms, to species, and up to the level of the biosphere. This framework forms a panarchyand exhibits non-linear behaviours; this means that "effect and cause are disproportionate, so that small changes in critical variables, such as the numbers of nitrogen fixers, can lead to disproportionate, perhaps irreversible, changes in the system propertie

Biodiversity


Biodiversity (an abbreviation of "biological diversity") describes the diversity of life from genes to ecosystems and spans every level of biological organization. The term has several interpretations, and there are many ways to index, measure, characterize, and represent its complex organization. Biodiversity includes species diversity, ecosystem diversity, genetic diversity and the complex processes operating at and among these respective levels. Biodiversity plays an important role in ecological health as much as it does for human health. Preventing species extinctions is one way to preserve biodiversity, but factors such as genetic diversity and migration routes are equally important and are threatened on global scales. Conservation priorities and management techniques require different approaches and considerations to address the full ecological scope of biodiversity. Populations and species migration, for example, are sensitive indicators of ecosystem services that sustain and contribute natural capital toward the well-being of humanity. An understanding of biodiversity has practical application for ecosystem-based conservation planners as they make ecologically responsible decisions in management recommendations to consultant firms, governments, and industry. The protected areas have been established under the protected area network across the world for conservation of biodiversity

Tidak ada komentar:

Posting Komentar